您当前的位置:首页 > 理想数、簇与算法 第2版 Cox,D.等著 2004年版 > 下载地址1
理想数、簇与算法 第2版 Cox,D.等著 2004年版
- 名 称:理想数、簇与算法 第2版 Cox,D.等著 2004年版 - 下载地址1
- 类 别:数学书籍
- 下载地址:[下载地址1]
- 提 取 码:
- 浏览次数:3
发表评论
加入收藏夹
错误报告
目录| 新闻评论(共有 0 条评论) |
资料介绍
理想数、簇与算法 第2版
作者:Cox,D.等著
出版时间:2004年版
内容简介
We wrote this book to introduce undergraduates to some interesting ideas in algebraic geometry and commutative algebra。 Until recently,these topics involved a lot of abstract mathematics and were only taught in graduate school。 But in the 1960s,Buchberger and Hironaka discovered new algorithms for manipulating systems of polynomial equations。 Fueled by the development of computers fast enough to run these algorithms,the last two decades have seen a minor revolution in commutative algebra。 The ability to compute efficiently with polynomial equations has made it possible to investigate complicated examples that would be impossible to do by hand,and has changed the practice of much research in algebraic geometry。 This has also enhanced the importance of the subject for computer scientists and engineers,who have begun to use these techniques in a whole range of problems。
目录
PrefacetotheFirstEdition
PrefacetotheSecondEdition
1. Geometry,cAlgebra,candAlgorithms
1. PolynomialsandAffineSpace
2. AffineVarieties
3. ParametrizationsofAffineVarieties
4. Ideals
5. PolynomialsofOneVariable
2. GroebnerBases
1. Introduction
2. OrderingscontheMonomialsink[x1. ,....,xn]
3. ADivisionAlgorithmink[x1. ,....,xn]
4. MonomialIdealsandDickson'scLemma
5. TheHilbertBasisTheoremandGroebnerBases
6. .PropertiesofGroebnerBases
7..Buchberger'scAlgorithm
8. .FirstApplicationsofGroebnerBases
9.(Optional)ImprovementsonBuchberger'scAlgorithm
3. EliminationTheory
1. TheEliminationandExtensionTheorems
2. TheGeometryofElimination
3. Implicitization
4. SingularPointsandEnvelopes
5. UniqueFactorizationandResultants
6. ResultantsandtheExtensionTheorem
4. TheAlgebra-GeometryDictionary
1. Hilbert'sNullstellensatz
2. RadicalIdealscandtheIdeal-VarietyCorrespondence
3. Sums,cProducts,candIntersetionscofIdeals
4. ZariskiClosureandQuotientscofIdeals
5. IrreducibleVarietiesandPrimeIdeals
6. DecompositionofaVarietycintoIrreducibles
7.(Optional)PrimaryDecompositionofIdeals
8. Summary
5. PolynomialandRationalFunctionsonaVariety
1. PolynomialMappings
2. QuotientsofPolynomialRings
3. AlgorithmicComputationscink[x1. ,....,xn]I
4. TheCoordinateRingofanAffineVariety
5. RationalFunctionsconcaVariety
6. (Optional)ProofcoftheClosureTheorem
6. RoboticsandAutomaticGeometricTheoremProving
1. GeometricDescriptionofRobots
2. TheForwardKinematicProblem
3. TheInverseKinematicProblemandMotionPlanning
4. AutomaticGeometricTheoremProving
5. Wu'sMetho
7.InvariantTheoryofFiniteGroups
1. SymmetricPolynomials
2. FiniteMatrixGroupsandRingsofInvariants
3. GeneratorsfortheRingofInvariants
4. RelationsAmongGeneratorsandtheGeometryofOrbits
8. ProjectiveAlgebraicGeometry
1. TheProjetivePlane
2. ProjectiveSpaceandProjectiveVarieties
3. TheProjectiveAlgebra-GeometryDictionary
4. TheProjectiveClosureofanAffineVariety
5. ProjectiveEliminationTheory
6. TheGeometryofQuadricHypersuffaces
7. Bezout'sTheorem
9.TheDimensionofaVariety
1. TheVarietyofaMonomialIdea
2. heComplementofaMonomialIdeal
3. TheHilbertFunctionandtheDimensionofaVariety
4. ElementarycPropertiescofcDimension
5. DimensionandAlgebraicIndependence
6. DimensionandNonsingularity
7. TheTangentCone
AppendixA.SomeConceptscfromAlgebra
1. FieldsandRings
2. Groups
3. Determinants
AppendixB.Pseudocode
1. Inputs,Outputs,Variables,andConstants
2. AssignmentStatements
3. LoopingStructures
4. BranchingStructures
AppendixC.ComputerAlgebraSystems
1. AXIOM
2. Maple
3. Mathematica
4. REDUCE
5. OthercSystems
AppendixcD.cIndependentcProjects
1. GeneralcComments
2. SuggestedcProjects
References
Index
作者:Cox,D.等著
出版时间:2004年版
内容简介
We wrote this book to introduce undergraduates to some interesting ideas in algebraic geometry and commutative algebra。 Until recently,these topics involved a lot of abstract mathematics and were only taught in graduate school。 But in the 1960s,Buchberger and Hironaka discovered new algorithms for manipulating systems of polynomial equations。 Fueled by the development of computers fast enough to run these algorithms,the last two decades have seen a minor revolution in commutative algebra。 The ability to compute efficiently with polynomial equations has made it possible to investigate complicated examples that would be impossible to do by hand,and has changed the practice of much research in algebraic geometry。 This has also enhanced the importance of the subject for computer scientists and engineers,who have begun to use these techniques in a whole range of problems。
目录
PrefacetotheFirstEdition
PrefacetotheSecondEdition
1. Geometry,cAlgebra,candAlgorithms
1. PolynomialsandAffineSpace
2. AffineVarieties
3. ParametrizationsofAffineVarieties
4. Ideals
5. PolynomialsofOneVariable
2. GroebnerBases
1. Introduction
2. OrderingscontheMonomialsink[x1. ,....,xn]
3. ADivisionAlgorithmink[x1. ,....,xn]
4. MonomialIdealsandDickson'scLemma
5. TheHilbertBasisTheoremandGroebnerBases
6. .PropertiesofGroebnerBases
7..Buchberger'scAlgorithm
8. .FirstApplicationsofGroebnerBases
9.(Optional)ImprovementsonBuchberger'scAlgorithm
3. EliminationTheory
1. TheEliminationandExtensionTheorems
2. TheGeometryofElimination
3. Implicitization
4. SingularPointsandEnvelopes
5. UniqueFactorizationandResultants
6. ResultantsandtheExtensionTheorem
4. TheAlgebra-GeometryDictionary
1. Hilbert'sNullstellensatz
2. RadicalIdealscandtheIdeal-VarietyCorrespondence
3. Sums,cProducts,candIntersetionscofIdeals
4. ZariskiClosureandQuotientscofIdeals
5. IrreducibleVarietiesandPrimeIdeals
6. DecompositionofaVarietycintoIrreducibles
7.(Optional)PrimaryDecompositionofIdeals
8. Summary
5. PolynomialandRationalFunctionsonaVariety
1. PolynomialMappings
2. QuotientsofPolynomialRings
3. AlgorithmicComputationscink[x1. ,....,xn]I
4. TheCoordinateRingofanAffineVariety
5. RationalFunctionsconcaVariety
6. (Optional)ProofcoftheClosureTheorem
6. RoboticsandAutomaticGeometricTheoremProving
1. GeometricDescriptionofRobots
2. TheForwardKinematicProblem
3. TheInverseKinematicProblemandMotionPlanning
4. AutomaticGeometricTheoremProving
5. Wu'sMetho
7.InvariantTheoryofFiniteGroups
1. SymmetricPolynomials
2. FiniteMatrixGroupsandRingsofInvariants
3. GeneratorsfortheRingofInvariants
4. RelationsAmongGeneratorsandtheGeometryofOrbits
8. ProjectiveAlgebraicGeometry
1. TheProjetivePlane
2. ProjectiveSpaceandProjectiveVarieties
3. TheProjectiveAlgebra-GeometryDictionary
4. TheProjectiveClosureofanAffineVariety
5. ProjectiveEliminationTheory
6. TheGeometryofQuadricHypersuffaces
7. Bezout'sTheorem
9.TheDimensionofaVariety
1. TheVarietyofaMonomialIdea
2. heComplementofaMonomialIdeal
3. TheHilbertFunctionandtheDimensionofaVariety
4. ElementarycPropertiescofcDimension
5. DimensionandAlgebraicIndependence
6. DimensionandNonsingularity
7. TheTangentCone
AppendixA.SomeConceptscfromAlgebra
1. FieldsandRings
2. Groups
3. Determinants
AppendixB.Pseudocode
1. Inputs,Outputs,Variables,andConstants
2. AssignmentStatements
3. LoopingStructures
4. BranchingStructures
AppendixC.ComputerAlgebraSystems
1. AXIOM
2. Maple
3. Mathematica
4. REDUCE
5. OthercSystems
AppendixcD.cIndependentcProjects
1. GeneralcComments
2. SuggestedcProjects
References
Index
相关推荐
- 文化伟人代表作图释书系 几何原本 全新修订版 (古希腊)欧几里得著 雷常茂译 2018年版
- 数学思想方法的人文解读
- 21世纪控制论综述评论集 纪念控制论创立70周年 1948-2018
- 理想数、簇与算法 第2版 Cox,D.等著 2004年版
- 时间的故事 (韩)辛慧恩著 (韩)曹艺贞绘 林春颖译 2009年版
- 数学史概论 第三版
- 走向IMO 数学奥林匹克试题集锦 2012 2012年IMO中国国家集训队教练组编 2012年版
- “十三五”移动学习型规划教材 线性代数 莫京兰,黄秋和,宁桂英 2019年版
- 切比雪夫逼近问题:从一道中国台北数学奥林匹克试题谈起
- 乐学七中 高中数学 必修2 廖学军,祁祖海主编 2014年版

